- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Alkhathlan, M (1)
-
Cachel, K (1)
-
Harrison, L (1)
-
Rundensteiner, E (1)
-
Shrestha, H (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Decisions involving algorithmic rankings affect our lives in many ways, from product recommendations, receiving scholarships, to securing jobs. While tools have been developed for interactively constructing fair consensus rankings from a handful of rankings, addressing the more complex real‐world scenario— where diverse opinions are represented by a larger collection of rankings— remains a challenge. In this paper, we address these challenges by reformulating the exploration of rankings as a dimension reduction problem in a system called FairSpace. FairSpace provides new views, including Fair Divergence View and Cluster Views, by juxtaposing fairness metrics of different local and alternative global consensus rankings to aid ranking analysis tasks. We illustrate the effectiveness of FairSpace through a series of use cases, demonstrating via interactive workflows that users are empowered to create local consensuses by grouping rankings similar in their fairness or utility properties, followed by hierarchically aggregating local consensuses into a global consensus through direct manipulation. We discuss how FairSpace opens the possibility for advances in dimension reduction visualization to benefit the research area of supporting fair decision‐making in ranking based decision‐making contexts. Code, datasets and demo video available at:osf.io/d7cwkmore » « lessFree, publicly-accessible full text available June 1, 2026
An official website of the United States government
